

European electro-optic and nonlinear PIC platform based on lithium niobate on insulator (LNOI)

ELENA AIMS TO ESTABLISH

- W the first European **LNOI-based open-access PIC foundry** through the creation of a **Process Design Kit** (PDK) library of standard **Building Blocks (BBs)** for the LNOI PIC platform to enable a large variety of PIC designs, accessible through monolithic integration and combination of BBs;
- W a **fully European supply chain for the LNOI PIC foundry** from wafer manufacturing, PIC design and simulations to characterisation and packaging.

OBJECTIVE #01

Develop and mature key passive and active BBs for the LNOI PIC platform as well as a reliable and reproducible BB fabrication process.

OBJECTIVE #02

Expand the foundry capabilities **by integrating indium phosphide (InP) BBs** (for light emission and detection) with a flexible and automatic assembly process.

OBJECTIVE #03

Develop a commercialization strategy including the key aspects of a supply chain:

- W establishing the processes to produce **150 mm** diameter optical-grade LNOI wafers on an industrial scale;
- W developing a reliable and flexible method for packaging LNOI chips and interfacing them with other PIC platforms such as InP using 3D-printed Photonic Wirebonds (PWB) for low-cost hybrid integration.

ELENA: TECHNOLOGY DRIVER FOR NEXT-DECADE PICS

HIGH BANDWIDTH

- Exponential expansion of the internet (beyond 400 Gbit/s)
- W Next-generation communication technologies (5G/6G)
- W New bandwidth-demanding applications (AR, VR, IoT, etc.)
- VX Cloud computing

LARGE-SCALE INTEGRATION

- W Low-loss and compact footprint
- W Heterogeneous integration
- Photonic-electronics co-integration
- V Programmable PICs

WIDE WAVELENGTH RANGE **OPERATION**

🕅 Availability of new bands / expansion of optical

LOW POWER CONSUMPTION 53l

- VX Fewer joules per bit V Cost-effective integrated systems W Versatile packaging
- 🕅 Low thermal parasitic effects
- Low-loss waveguide

$\overline{\mathbb{Z}}$ **NEW FUNCTIONALITIES** ₩ On-chip nonlinear wavelength conversion

OBJECTIVE #04

Produce four PIC prototypes for the end-user partners in the project consortium to **demonstrate the monolithic integration** of the newly developed BBs.

OBJECTIVE #05

Create an **end-user group and a strong network of stakeholders** to promote ELENA's LNOI-integrated photonics.

- data link (L-band, S-band, etc.)
- Demand for PICs in new wavelength ranges such as visible and near infrared: - quantum computing
 - biosensing
 - Raman spectroscopy

 Μαρτίς Μαραίος Μαρα W Acousto-optical modulators W Narrow linewidth, fast tunable lasers ₩ Ultra-fast photodetectors VX Entangled/single-photon sources

LNOI – A VERSATILE PIC PLATFORM FOR THE FUTURE

- Intrinsic EO coefficient
- Fast (> 100 GHz) and low V_{π} (< 1 V) modulators - Addressing the need for a wider bandwidth
- CMOS-level voltage operation
- Ultra-low insertion loss modulators

Integration and scalability - Low-loss waveguides (< 0.1dB/cm)</p> - Small bending radii (~30µm)

- Compact circuit footprint - Low-power building blocks
- Programmable photonics
- High-port-count switches

- Wide bandgap
- LiNbO, bandgap = 4.9 eV - High optical power handling
- Low optical loss
- No parasitic two-photon absorption
- Large 2nd and 3rd order optical nonlinearities
 - Non-linear photonics and metrology
 - Wavelength conversion, 2nd harmonic generation, DFG, and SFG
 - **Optical frequency** combs and supercontinuum generation
 - Entangled photon pair generation

Piezoelectric effect - Acousto-optical modulators (AOM) - Optical MEMS integration - Gyros and pressure sensors

Wide transparency window

- LiNbO₃ is transparent for **350 nm** to 5.5 µm wavelength span - Availability of new bands /
- expansion of optical data link
- Electro-optical light control below µm wavelength (the range in which Si or InP are not transparent)

CSEM'S LNOI PIC PLATFORM

Property	Value
Wafer cut	x
Refractive index (ordinary)	2.21 (@ 1550 nm)
Refractive index (ex-ordinary)	2.13 (@ 1550 nm)
Bandgap	4.9eV
Transparency window	350nm - 5.5 µm
EO coefficient	r ₃₃ = 31 pm /V
X ⁽²⁾ nonlinearity	3x10 ⁻¹¹ m/V
X ⁽²⁾ nonlinearity	1.6x10 ⁻²¹ m ² V ⁻²
Piezoelectric coefficient	d ₃₃ = 6.0 x 10 ⁻¹² C/N

APPLICATIONS

Thanks to the unique properties of lithium niobate, an LNOI PIC platform could serve many applications ranging from **telecom** (e.g. supporting ultra-high-speed transceivers beyond 100

ELENA'S ENVISIONED LIBRARY OF STANDARDISED BUILDING BLOCKS: TOWARDS THE FIRST LNOI PHOTONICS PROCESS DESIGN KIT (PDK)

